skip to primary navigationskip to content
 

26.10.18 Mapping regulatory elements across the C. elegans lifespan

last modified Nov 06, 2018 05:41 PM
The Ahringer lab and international colleagues used multiple assays to systematically identify and annotate accessible chromatin in the six C. elegans developmental stages and at five time points of adult ageing
26.10.18 Mapping regulatory elements across the C. elegans lifespan

FIg 4 (extract): Clusters of promoters with shared relative accessibility patterns

Chromatin accessibility dynamics across C. elegans development and ageing

Jänes et al. (2018) eLife 7:e37344  DOI: 10.7554/eLife.37344.

 

Abstract from the paper

An essential step for understanding the transcriptional circuits that control development and physiology is the global identification and characterization of regulatory elements.

Here we present the first map of regulatory elements across the development and ageing of an animal, identifying 42,245 elements accessible in at least one C. elegans stage. Based on nuclear transcription profiles, we define 15,714 protein-coding promoters and 19,231 putative enhancers, and find that both types of element can drive orientation-independent transcription. Additionally, more than 1000 promoters produce transcripts antisense to protein coding genes, suggesting involvement in a widespread regulatory mechanism.

We find that the accessibility of most elements changes during development and/or ageing and that patterns of accessibility change are linked to specific developmental or physiological processes. The map and characterization of regulatory elements across C. elegans life provides a platform for understanding how transcription controls development and ageing.

++++++++++++

Read more about research in the Ahringer lab.

Watch Julie Ahringer describe her research on video.

Studying development to understand disease

The Gurdon Institute is funded by Wellcome and Cancer Research UK to study the biology of development, and how normal growth and maintenance go wrong in cancer and other diseases.

combinedLogo x3 trans2018

 

Share this

Liver organoids: from basic research to therapeutic applications

NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs

The roles of DNA, RNA and histone methylation in ageing and cancer

Separating Golgi proteins from cis to trans reveals underlying properties of cisternal localization

Sequencing cell-type-specific transcriptomes with SLAM-ITseq

Mature sperm small-RNA profile in the sparrow: implications for transgenerational effects of age on fitness

Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction

Derivation and maintenance of mouse haploid embryonic stem cells

Establishment of porcine and human expanded potential stem cells

Adapting machine-learning algorithms to design gene circuits

Lgr5+ stem/progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool

Identification of a regeneration-organizing cell in the Xenopus tail

Citrullination of HP1γ chromodomain affects association with chromatin

A critical but divergent role of PRDM14 in human primordial germ cell fate revealed by inducible degrons

A transmissible RNA pathway in honey bees

METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation

A Secreted RNA Binding Protein Forms RNA-Stabilizing Granules in the Honeybee Royal Jelly

The Human Lung Cell Atlas - A high-resolution reference map of the human lung in health and disease

A Compendium of Mutational Signatures of Environmental Agents

Characteristics and homogeneity of N6-methylation in human genomes

Link to full list on PubMed