skip to primary navigationskip to content
 

27.04.17 Analytical chemistry reveals diversity of RNA modifications in C. elegans

last modified May 03, 2017 01:49 PM
The Miska lab with colleagues analyse the complete C elegans transcriptome for RNA modifications
27.04.17 Analytical chemistry reveals diversity of RNA modifications in C. elegans

Extract from Fig.1: 13C-Labelling of the C. elegans transcriptome.

The Profile and Dynamics of RNA Modifications in Animals

vanDelft P et al. (2017) ChemBioChem DOI: 10.1002/cbic.201700093. Version of Record online: 27 April 2017 

Abstract from the paper

More than a hundred distinct modified nucleosides have been identified in RNA, but little is known about their distribution across different organisms, their dynamic nature and their response to cellular and environmental stress. Mass-spectrometry-based methods have been at the forefront of identifying and quantifying modified nucleosides. However, they often require synthetic reference standards, which do not exist in the case of many modified nucleosides, and this therefore impedes their analysis. Here we use a metabolic labelling approach to achieve rapid generation of bio-isotopologues of the complete Caenorhabditis elegans transcriptome and its modifications and use them as reference standards to characterise the RNA modification profile in this multicellular organism through an untargeted liquid-chromatography tandem high-resolution mass spectrometry (LC-HRMS) approach. We furthermore show that several of these RNA modifications have a dynamic response to environmental stress and that, in particular, changes in the tRNA wobble base modification 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) lead to codon-biased gene-expression changes in starved animals.

 

Watch Eric Miska describe his research on video.

Read more about research in the Miska lab.

Studying development to understand disease

The Gurdon Institute is funded by Wellcome and Cancer Research UK to study the biology of development, and how normal growth and maintenance go wrong in cancer and other diseases.

combinedLogo x3 trans2018

 

Share this

Immune Cell Dynamics Unfolded by Single-Cell Technologies

Chromatin Accessibility Impacts Transcriptional Reprogramming in Oocytes

Integrin α2 marks a niche of trophoblast progenitor cells in first trimester human placenta

Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway

SLAM-ITseq: Sequencing cell type-specific transcriptomes without cell sorting

SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements

scmap: projection of single-cell RNA-seq data across data sets

Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis

Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48

The developmental origin of brain tumours: a cellular and molecular framework

Bioinformatics challenges and perspectives when studying the effect of epigenetic modifications on alternative splicing

ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks

Extracellular Forms of Aβ and Tau from iPSC Models of Alzheimer's Disease Disrupt Synaptic Plasticity

Combinational Treatment of Trichostatin A and Vitamin C Improves the Efficiency of Cloning Mice by Somatic Cell Nuclear Transfer

Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts

G9a regulates temporal preimplantation developmental program and lineage segregation in blastocyst

Link to full list on PubMed