skip to primary navigationskip to content
 

31.10.16 Jackson group demonstrate how haploid ES cells can provide new genetic screening platform

last modified Jan 26, 2017 02:51 PM
This Nature Chemical Biology publication from Steve Jackson's group reveals a genetic screening platform based on haploid embryonic stem cells
31.10.16 Jackson group demonstrate how haploid ES cells can provide new genetic screening platform

New technique allows identification of recessive suppressor mutations in mammalian cells

Genome-wide genetic screening with chemically mutagenised haploid embryonic stem cells

Forment, JV et al. (2017) Nature Chemical Biology 13, 12–14. doi: 10.1038/nchembio.2226

[Published online 31 October 2016] 

A PDF file can be accessed here. 

 

Abstract from paper

In model organisms, classical genetic screening via random mutagenesis provides key insights into the molecular bases of genetic interactions, helping defining synthetic-lethality, synthetic-viability and drug-resistance mechanisms. The limited genetic tractability of diploid mammalian cells, however, precludes this approach. Here, we demonstrate the feasibility of classical genetic screening in mammalian systems by using haploid cells, chemical mutagenesis and next-generation sequencing, providing a new tool to explore mammalian genetic interactions.

 

Read more about research in the Jackson lab.

Watch Steve Jackson describe his research on video.

Studying development to understand disease

The Gurdon Institute is funded by Wellcome and Cancer Research UK to study the biology of development, and how normal growth and maintenance go wrong in cancer and other diseases.

combinedLogo x3 trans2018

 

Share this

A walk through tau therapeutic strategies

Labeling strategies matter for super-resolution microscopy: a comparison between HaloTags and SNAP-tags

Stem Cell-Derived Human Gametes: The Public Engagement Imperative

Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment

Comparative Epigenomics Reveals that RNA Polymerase II Pausing and Chromatin Domain Organization Control Nematode piRNA Biogenesis

Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis

Constrained actin dynamics emerges from variable compositions of actin regulatory protein complexes

Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia

Drosophila IMP regulates Kuzbanian to control the timing of Notch signalling in the follicle cells

Challenges in unsupervised clustering of single-cell RNA-seq data

Engineering vasculature: Architectural effects on microcapillary-like structure self-assembly

ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks

Altered γ-Secretase Processing of APP Disrupts Lysosome and Autophagosome Function in Monogenic Alzheimer’s Disease

Helicase subunit Cdc45 targets the checkpoint kinase Rad53 to both replication initiation and elongation complexes after fork stalling

Competition for Mitogens Regulates Spermatogenic Stem Cell Homeostasis in an Open Niche

Link to full list on PubMed