skip to primary navigationskip to content
 

21.12.15 Discovery of new DNA modification by Magda Koziol in the Gurdon lab

last modified Apr 07, 2016 04:47 PM
A paper authored by the Gurdon lab's Magda Koziol in Nature Structural and Molecular Biology suggests that DNA modifications are more diverse than previously thought.
21.12.15 Discovery of new DNA modification by Magda Koziol in the Gurdon lab

Fig 2b from the paper

The world of epigenetics – where molecular ‘switches’ attached to DNA turn genes on and off – has just got bigger with the discovery by a team of scientists from the University of Cambridge of a new type of epigenetic modification.

Published today in the journal Nature Structural and Molecular Biology, the discovery suggests that many more DNA modifications than previously thought may exist in human, mouse and other vertebrates.

DNA is made up of four ‘bases’: molecules known as adenine, cytosine, guanine and thymine – the A, C, G and T letters. Strings of these letters form genes, which provide the code for essential proteins, and other regions of DNA, some of which can regulate these genes. 

Epigenetics (epi - the Greek prefix meaning ‘on top of’) is the study of how genes are switched on or off. It is thought to be one explanation for how our environment and behaviour, such as our diet or smoking habit, can affect our DNA and how these changes may even be passed down to our children and grandchildren.

Epigenetics has so far focused mainly on studying proteins called histones that bind to DNA. Such histones can be modified, which can result in genes being switched on or off. In addition to histone modifications, genes are also known to be regulated by a form of epigenetic modification that directly affects one base of the DNA, namely the base C. More than 60 years ago, scientists discovered that C can be modified directly through a process known as methylation, whereby small molecules of carbon and hydrogen attach to this base and act like switches to turn genes on and off, or to ‘dim’ their activity . Around 75 million (one in ten) of the Cs in the human genome are methylated. 

Now, researchers at the Wellcome Trust-Cancer Research UK Gurdon Institute and the Medical Research Council Cancer Unit at the University of Cambridge have identified and characterised a new form of direct modification – methylation of the base A – in several species, including frogs, mouse and humans. 

Methylation of A appears to be far less common that C methylation, occurring on around 1,700 As in the genome, but is spread across the entire genome. However, it does not appear to occur on sections of our genes known as exons, which provide the code for proteins.

“These newly-discovered modifiers only seem to appear in low abundance across the genome, but that does not necessarily mean they are unimportant,” says Dr Magdalena Koziol from the Gurdon Institute. “At the moment, we don’t know exactly what they actually do, but it could be that even in small numbers they have a big impact on our DNA, gene regulation and ultimately human health.” 

More than two years ago, Dr Koziol made the discovery while studying modifications of RNA. There are 66 known RNA modifications in the cells of complex organisms. Using an antibody that identifies a specific RNA modification, Dr Koziol looked to see if the analogous modification was also present on DNA, and discovered that this was indeed the case. Researchers at the MRC Cancer Unit then confirmed that this modification was to DNA, rather than from any RNA contaminating the sample.

“It’s possible that we struck lucky with this modifier,” says Dr Koziol, “but we believe it is more likely that there are many more modifications that directly regulate our DNA. This could open up the field of epigenetics.”

The research was funded by the Biotechnology and Biological Sciences Research Council, Human Frontier Science Program, Isaac Newton Trust, Wellcome Trust, Cancer Research UK and the Medical Research Council.

 

Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications

Koziol, MJ et al. Nature Structural and Molecular Biology; advance online publication 21 Dec 2015

doi:10.1038/nsmb.3145

The article is derived from the press release issued by the University of Cambridge.

Studying development to understand disease

The Gurdon Institute is funded by Wellcome and Cancer Research UK to study the biology of development, and how normal growth and maintenance go wrong in cancer and other diseases.

combinedLogo x3 trans2018

 

Share this

Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48

The developmental origin of brain tumours: a cellular and molecular framework

Bioinformatics challenges and perspectives when studying the effect of epigenetic modifications on alternative splicing

ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks

Extracellular Forms of Aβ and Tau from iPSC Models of Alzheimer's Disease Disrupt Synaptic Plasticity

Combinational Treatment of Trichostatin A and Vitamin C Improves the Efficiency of Cloning Mice by Somatic Cell Nuclear Transfer

Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts

G9a regulates temporal preimplantation developmental program and lineage segregation in blastocyst

Validating the concept of mutational signatures with isogenic cell models

A PAX5-OCT4-PRDM1 developmental switch specifies human primordial germ cells

Targeting NAT10 enhances healthspan and lifespan in a mouse model of human accelerated aging syndrome

An alternative mode of epithelial polarity in the Drosophila midgut

Detection of functional protein domains by unbiased genome-wide forward genetic screening

Fank1 and Jazf1 promote multiciliated cell differentiation in the mouse airway epithelium

Genome organization at different scales: nature, formation and function

Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations

 

Link to full list on PubMed