skip to primary navigationskip to content
 

25.10.16 Synthetic-lethal combination of PAXX and XLF loss in mammalian development

last modified Nov 21, 2016 09:17 AM
In this Genes & Development paper, the Jackson group and colleagues demonstrate the combined lethality of PAXX and XLF gene knockouts
25.10.16 Synthetic-lethal combination of PAXX and XLF loss in mammalian development

Excerpt from Fig4A: Cell-death marker accumulates in developing Paxx−/−, Xlf−/− mouse brain.

Synthetic lethality between PAXX and XLF in mammalian development

Balmus, G et al. (2016) Genes & Dev. 2016. 30: 2152-2157  DOI:10.1101/gad.290510.116

 

Exploring the role of recently discovered PAXX, a factor in the cellular pathway that repairs DNA double-strand breaks, the Jackson group and colleagues show that loss of PAXX in combination with loss of XLF in mice is a lethal combination despite the mild health effects that result from loss of either factor alone.

 

Abstract from paper

PAXX was identified recently as a novel nonhomologous end-joining DNA repair factor in human cells. To characterize its physiological roles, we generated Paxx-deficient mice. Like Xlf−/− mice, Paxx−/− mice are viable, grow normally, and are fertile but show mild radiosensitivity. Strikingly, while Paxx loss is epistatic with Ku80, Lig4, and Atm deficiency, Paxx/Xlf double-knockout mice display embryonic lethality associated with genomic instability, cell death in the central nervous system, and an almost complete block in lymphogenesis, phenotypes that closely resemble those of Xrcc4−/− and Lig4−/− mice. Thus, combined loss of Paxx and Xlf is synthetic-lethal in mammals.

 

Abstract reproduced under Creative Commons License CC-BY-4.0 

 

Read more about research in the Jackson lab.

Watch Steve Jackson describe his research on video.

Studying development to understand disease

The Gurdon Institute is funded by Wellcome and Cancer Research UK to study the biology of development, and how normal growth and maintenance go wrong in cancer and other diseases.

combinedLogo x3 trans2018

 

Share this

Integrin signaling downregulates filopodia in muscle-tendon attachment

Defining Lineage Potential and Fate Behavior of Precursors during Pancreas Development

DDX3X RNA helicase affects breast cancer cell cycle progression by regulating expression of KLF4

Natural Genetic Variation in a Multigenerational Phenotype in C. elegans

On the origin of the human germline

Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells 

Genome-Scale Oscillations in DNA Methylation during Exit from Pluripotency

Immune Cell Dynamics Unfolded by Single-Cell Technologies

Chromatin Accessibility Impacts Transcriptional Reprogramming in Oocytes

Integrin α2 marks a niche of trophoblast progenitor cells in first trimester human placenta

Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway

SLAM-ITseq: Sequencing cell type-specific transcriptomes without cell sorting

SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements

scmap: projection of single-cell RNA-seq data across data sets

Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis

Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48

The developmental origin of brain tumours: a cellular and molecular framework

 

 

Link to full list on PubMed