skip to primary navigationskip to content
 

26.02.18 Simons and Huch labs show how dynamics of biological systems offers new arena for statistical physics

last modified Feb 27, 2018 02:00 PM
This paper in Nature Physics shows that principles emerging from a study of cell lineage clusters can be mapped to the dynamics of aerosols
26.02.18 Simons and Huch labs show how dynamics of biological systems offers new arena for statistical physics

Mosaic labelling of the developing mouse heart at E12.5.

Universality of clone dynamics during tissue development

Rulands S et al. (2018) Nature Physics DOI:10.1038/s41567-018-0055-6

 

Abstract from the paper

The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease. But what can be learned from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth?

Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments.

Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.

 

================================

Read more about research in the Simons lab and watch Ben Simons describe his research on video.

Read more about the Huch lab and watch Meri Huch on video.

Studying development to understand disease

The Gurdon Institute is funded by Wellcome and Cancer Research UK to study the biology of development, and how normal growth and maintenance go wrong in cancer and other diseases.

combinedLogo x3 trans2018

 

Share this

Immune Cell Dynamics Unfolded by Single-Cell Technologies

Chromatin Accessibility Impacts Transcriptional Reprogramming in Oocytes

Integrin α2 marks a niche of trophoblast progenitor cells in first trimester human placenta

Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway

SLAM-ITseq: Sequencing cell type-specific transcriptomes without cell sorting

SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements

scmap: projection of single-cell RNA-seq data across data sets

Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis

Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48

The developmental origin of brain tumours: a cellular and molecular framework

Bioinformatics challenges and perspectives when studying the effect of epigenetic modifications on alternative splicing

ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks

Extracellular Forms of Aβ and Tau from iPSC Models of Alzheimer's Disease Disrupt Synaptic Plasticity

Combinational Treatment of Trichostatin A and Vitamin C Improves the Efficiency of Cloning Mice by Somatic Cell Nuclear Transfer

Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts

G9a regulates temporal preimplantation developmental program and lineage segregation in blastocyst

Link to full list on PubMed